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MU LT I - STEP R UN GE- KUTTA METHODS 

SUMMARY 

The multi-step methods presented in  this report  differ from the classic,  
single-step Runge-Kutta process by utilizing the numerical resul ts  of the 
previous integrations. 
complex Taylor expansions of the functions involved and instead employs the 
writer's previously developed method of quadratures. 

A s  developed here ,  the multi-step process avoids the 

INTRODUCTION 

The classic Runge-Kutta method, which is a single-step process,  has a 
number of pleasing properties, but since i t  does not utilize previous numerical 
results of the integration, i t s  efficiency is impaired. 
what remedied here  by developing a multi-step method that is quite analogous 
to the single-step Runge-Kutta process. By utilizing the evaluations at pre- 
ceding points of the function in  the differential equation to be integrated, some 
reduction in the number of evaluations required in the single-step process is 
expected. 

This defect will be some- 

Perhaps the greatest  obstacle in the development of a multi-step process 
is the tedious--and formidable--task of making Taylor expansions of the func- 
tions (those for both the current  and preceding points) about the current point. 
In a recent art icle [ 11 , the w r i t e r  has developed a "method of quadratures" 
for obtaining the system of equations that determine the parameters  of the 
(single-step) classic Runge-Kutta process; this method obviates the need'for 
making the complex Taylor expansions. 
method of quadratures can be extended to the multi-step process. 

In this report  we will show how the 

THE TWO-STEP FOURTH-ORDER SOLUTION 

For simplicity, we will consider only the initial value problem 



though the results may be extended to systems of differential equations. 
define the sequence of equations 

We 

= hf (XO, yo) (2a) 

where xo and yo designate the current point. 

Let 

refer to the preceding point separated by the step-size h. 
in equation (2) by x - ~  and y-l (and make the appropriate changes in the super- 
scr ipts  on the k's) , we get 

If we replace xo, yo 

In equations (2) and ( 4 ) ,  and subsequently, the superscripts will distinguish 
the current from the preceding point. 

We will show that 

with appropriate values for the weights and the parameters  in equations (2)  
and ( 4 ) ,  will give a solution of fourth-order accuracy at (xo + h).  Since 

2 



the evaluations of the functions in equation (4) will already have been made, 
only the three evaluations in equation (2) will be required to find the solution 
at the next point (xo + h) .  Because these evaluations are the most time- 
consuming part  of the computation and since the classic Runge-Kutta theory 
required four evaluations for this order ,  the advantage of this multi-step 
method is evident. 

Suppose now that equation ( I )  is reformulated as 

in which form it includes the initial conditions. Now let us replace the right 
member of equation ( 6 )  by the approximating quadrature sum 

r 

-I 

where for convenience we hzve set 

and 

(9 )  x-3 = X O  + - i ) h  

and where yi will be used for y(x i ) .  

each term in equation (7) by its corresponding term in equation (5).  

We will now show how we may replace 

IExcept initially. Thus, in common with all multi-step methods, it is not 
self-starting. 

2This assumes that the e r r o r s  in the two cases  a r e  comparable--which need not 
be the case. 
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A s  we have shown in [ I] , in order  for equation (7) to be a quadrature 
approximation of equation ( 6 )  with fourth-order accuracy in  h, the following 
relations must hold: 

where u. is given by 
J 

The reason for showing the partitions in the matr ices  in equation (IO) is evident. 

If we substitute equations ( 8 ) ,  ( 9 )  , and (11) into equation (IO) and 
equate coefficients of like powers of h, we get the matrix equation that may 

3 replace equation ( I O )  

3See reference [ I] for more details about this operation. 
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These give some of the equations in the multi-step Runge-Kutta process. 

Using the quadrature method, let  us now examine the further conditions 
by which equation (7) may be replaced by equation (5) .  If we compare analogous 
te rms  in equations (5) and ( 7 )  we see that the differences are in  the expressions 
that replace yi in the functions f(xi ,  yi) ; the substitutions for yi, shown in 

equations (2) and (4) , substantially represent the unique aspect of the Runge- 
Kutta process. These interchanges for the yi in f (x i ,  yi) might be permissible 

i f  the t e rms  in equation ( 7 )  are replaced by expressions of an acceptable order ,  
the order  three in this case,  not four, because of the factor h in both equations 
(5) and (7) .  To attain this precision certain conditions, which will give other 
Runge-Kutta equations, must be imposed. 

Thus, the f i rs t  term in equation ( 7 )  that will be affected by substituting 
replacements for y.  is [(xi, y l ) ,  which is to be replaced by 

1 

as  may be seen from equation (2b).  
approximation €or y1 that replaces it with (yo + /321k1(o) ) , as is shcwn in 
equation (13) ; to attain the requisite precision indicated previously, the 
following conditions must hold [ I] : 

This may be done by making a quadratuw 
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(-1) ) , Similarly, to replace f ( ~ - ~ ,  Y - ~ )  in equation (7) by f ( ~ - , , y - ~  + Pzlkl 

as shown in equation (4b), with the necessary precision, we must also satisfy 
the conditions 

where 

r = 0 , 1 , 2 , 3  (17) 

A s  may easily be  seen , equations (16) and (17) can be obtained simply 
by replacing xo by (xo - h) in  equations(l4) and (15); this is to be expected 
if we note that equation (4b) is obtained from equation (2b) by the same trans- 
formation. 

Similarly, we can replace f(x2, y2) and f ( ~ - ~ ,  Y - ~ )  in equation (7)  by 
the functions shown in equations (2c) and (4c) ; this is accomplished by re- 
placing y2 and y-3 with appropriate quadratures. 

The conditions for  replacing y2 by (yo + p31k1(0) + p32k2(0)) , as 
shown in equation (2c) and with the requisite degree of precision three,  are 

where u (a3) is given by equation (15). r 
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Similarly, to replace y-3 in f (x-3, y-3) by (y-1+ P3ikl(-I)+ P3zk2 (-1) ) , 
as is indicated in equation (4c) , with the required degree of precision, 
we must satisfy 

where Ti ( a3) is given by equation (17). A s  before,  we can see that equation 

(19) can be obtained from equation (18) by replacing xo with (xo - h) -- and, 
of course,  xi with xo -- with corresponding changes in the right members. 

r 

THE RUNGE-KUTTA MATRIX EQUATION 

In [ I] we have shown, for the classic single-step case,  how the conditions 
we derived by using our quadrature method--in this present case the analogous 
equations (14) , (16) , (18) , and (19) --are used to give an applicable Runge- 
Kutta matrix equation. 

We will here reconstruct the general idea without too detailed a treat- 
ment ( see  also Appendix A ) .  Using the aforementioned equations, let US form 
the following weighted expressions: 

Let us first dispose of the case j=O. We must first note, by equations 
(15) and (17) , that 

h - 
uo (ai+l) = uo (ai++ = i+ I 

SO that the first equations in (14) , (16) , (18) , and (19) are identically 

satisfied i f  
a 2  = Pzi 
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In general ,  the equations 

a =  + ' - + i=1,2 (N-1) (21) i+ i  'i+iY i + 'i+2,2 Y 

hold as they do in  the single-step case. 

Let us  i l lustrate the result of using equation (20) when j=2. Using 
equations (15) and (17) to replace the u I s ,  we have 

j 

The corresponding expression for  ( 2 0 )  is as follows, if we replace 
uz( az) , uz( as) and Uz( 02) , Uz( a3) by the left members  of the equations ( 14) , 
(16) , (18) and (19):  

If now we equate powers of h in equations (22) and ( 2 3 )  we obtain the 
two Runge-Kutta equations: 

w2 (-1)az2 + w3 (-I) ( a 3 2  - 2p32az) + W2 ( O ) 0 i 2 2  + W3(O)  ( a 3 2  - 2832a2) = o 
( 2 4 )  

4We omit the h term since it contributes nothing new. 
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No new results will be derived i f  we treat equation ( 2 0 )  similarly when 
j = I ,  3. 

Without repeating in detail what has been developed in [ I] for the single- 
step classic Runge-Kutta process,  we will note that we can replace w; (O) in  

equation (20) by w (O) a and, similarly,  o!-') by o!-') (ai - I). A lrepetition 
i i  1 1 

of the previous analysis will yield another Runge-Kutta equation. 

We will see that, as in the single-step process,  i f  we can find other sets 
of what we have called generalized Runge-Kutta weight coefficients to use in  
equation ( 2 0 )  we should eventually be able to produce all  of the relevant Runge- 
Kutta equations. 
from the single-step process and avoid the basic , but tedious , work in the 
illustration above. 

We will next show how we can get all of these coefficients 

We will anticipate the resul ts  we would obtain in  the form of a matrix 
equation: 

( 2 6 )  
where 0,  the right member of equation ( 2 6 ) ,  is the appropriate null matrix. 

THE TWO- STEP F I FTH-0 RDER RUNGE-KUTTA EQUATIONS 

The process for obtaining the generalized Runge-Kutta weight matrix,  

The solution 

even for the relatively simple two-step fourth-order case,  becomes somewhat 

5As we will see later,only four of these equations are relevant. 
for the two-step fourth order  is given in Appendix B. 
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involved when rigorously justified. 
an extension of the one-step process,  and that can easily be  extended to any 
order ,  as is seen in [ I ] .  
fifth-order Runge-Kutta matrix equation. 
resul ts  derived in [ 13 , we will first wr i te  out the one-step Runge-Kutta matrix 
equation for the fifth order  with five evaluations. 

We will now examine a procedure that is 

Let us  demonstrate this by developing the two-step 
With a slight modification of the 

Let us define the matrices 

and 

C =  

‘The exact number of evaluations is unimportant for our demonstration. 
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and w he r e  

Y 3 ( O )  (Yi) = Y i 0 ) P 4 3  + Y J O )  P53 

Y4(O+Yi)  = Y 5 ( O )  P54 = 0 

The single-step fifth-order Runge-Kutta matrix equation with five 
evaluations' is given by 

7The values for  y ( O )  ( y . ) ,  ( j  = 2 ,3 ,4 ,5 )  may be  derived from y ( O )  (wi)  , 

defined by equation (29) , by replacing w.  in the la t ter  t e rms  with the 
corresponding y ( O ) .  

*It has been shown [ 2, 31 that the fifth order  requires  at least  six evaluations 
for a solution. 
the number of evaluations by one. 

j 1 j 

1 

i 

Since we are using a two-step process,  we would like to reduce 



where 0 is the appropriate null matrix and where 

and C is given by equation (28).  
get 

Combining the matr ices  in equation (32) ,  we 

The two-step fifth-order Runge-Kutta process  with five evaluations 
will take the linear form 

whe re 

and where the superscr ipts  ( 0 )  and (-1) refer to the cur ren t  and preceding 
points, respectively . 
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To accommodate the antecedent point, certain modifications will have 
to be  made in the two matr ices  in equation (31). In the case of the matrix 

from the appropriate superscr ipt  on w we must replace a!. by (a!  -1). With 

these changes we will call the resulting matrix 

, as we may see from equation (26) , this is quite simple because, aside 

i ’  1 i 
. (-1) 

The accompanying change in the matrix in equation (33) is not as simple, 
and only the resul t  will be  given for the order  of interest  here.  ’ Thus, i f  we 
write for  the matrix in equation (33) 

or,substituting the values for the elements from equation (33) and using the 
superscript  (-1) to distinguish it from the matrix for  the cur ren t  point, we 
have 

’This is developed in  detail in Appendix A. 
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x(-l) . 

whose elements are partially shown in equation ( 3 9 ) .  

We can now combine our results to give us the matrix equation for the 
two-step fifth-order process. This can be written 

appropriate null matrix. 

A s  an illustration, let  us  return to the two-step fourth-order equations 
with three evaluations at each point, then the matrices in equation (40) become 
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which give both the Runge-Kutta equations for the fourth-order methodi0 and 
the fifth-order t e rms  from which we may find the truncation e r ro r .  " If the 
latter t e rms  are ignored, equation (41) will adequately represent the required 
equations. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama, September I, 1967 
03 9-00-24- 0000 

*'These are the equations in which the sum of the exponents in the product of 
the a's  and p's  in any te rm is always less  than the order  of the process. 

"These equations, aside from some misprints,  may be found in [ 41 . 
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APPENDIX A 

DERIVATION OF THE TWO-STEP FOURTH-ORDER EQUATIONS 

The conditions we have derived using the quadrature methods for the 
two-step fourth-order process are given by equations (14), (16 ) ,  (18), and 
(19) .  We will now display these equations in an expanded form in Table I and 
show how we can obtain from these the Runge-Kutta equations. 

In the first two groups ofTable I are given the equations (14) and (18) 
for  i = 0, I ,  2 ,  3,  with the u. (a,) and u. ( a3) t e rms  in the right membw:.: 

expanded by using equation (15). In the last  two groups in Table I are the 
expanded equations (16) and (19) ,  where these are obtained from the first 
two groups by replacing xo by xo - h. 

1 1 

In Table I1 are shown the resul ts  of combining s imilar  t e rms  of the left 
and right members of the equations in Table I. For  convenience, in  forming 
equation (20) we have associated each group in these tables with a weight 

( - I ) ;  and in Table I we have retained the origin of each i coefficient w (O) or  w 

equation by the appropriate label u. ( a2) o r  u. ( a 3 ) .  
i 

1 1 

With the aid of Table 11 it is quite easy to form the expressions for 
equation (20)  and to derive the matrix equation (26) .  

It will be observed that by extending Table I the Runge-Kutta equations 
for any higher order  multi-step process may be obtained in a similar manner. 

16 



TABLE I. THE CONDITIONS FOR THE TWO-STEP FOURTH-ORDER PROCESS 
GIVEN BY EQUATIONS (14),  ( I C ) ,  (18) ,  AND (19) .  

a,h = azh 
r 

I 2 2  (-1) (azh) ( x O  - h) = (azh) ( X O  - h) + - h  CY^ 
W2 2 1 

( azh )  (xo - h ) 2  = ( azh )  (x, - h ) 2  + (xoh') 012' - h3az2 + - h3az3 

(a,h) (xo - h)3  = a2h(x0 - h)3 + 2 h2aZ2 (x: - 2xoh+h2) + h3a: (xo - h) + - h4a; 
3 

3 1 
4 
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APPENDIX B 

SOLUTION OF THE TWO-STEP FOURTH-ORDER EQUATIONS 

The solution of the Runge-Kutta equations for the two-step fourth-order 
process will be indicated here ,  since the procedure can generally be  followed 
in the solution of other multi-step equations. 

We must satisfy the four equations in (12) and, in addition, the four . .  

applicablei2 equations in (26) , which are as follows: 

ell + w\O)'> + el2(m3 (-I)  + w3 (0)) = 0 

e11[w2 (-1) (a2- i>+ w2 ('1 a2] + ei2 [w3 (-1) (a3-i) + aio) a 3 3  = 0 

mi-') (ezi - 2eli) + w(3-i)(e22 - 2ei,) + w i 0 )  e2i + w(3O) e Z 2 =  o 
P 3 2  ( w 3  (-1) + $)) = 0 

where e is defined by equations (33)  and (37) .  
i j  

From equations (4-B) and (I-B) we easily obtain 

(-1) + = 0 

(-1) + = 0 

(-I) + w1 ( 0 )  = 1 

WZ 

w3 

and i f  we combine these with the f i r s t  equation in (12) ,  we get also 

ai 

12These are the equations that contain only t e rms  in which the sums of the 
exponents in the products of the a's  and P's do not exceed three. 
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Using equation (5-B) , both equations ( 2 - B )  and (3-B) can be reduced to 

0 0 w2 ell + w3 eI2 = 0 

or 

Equations (5-B) and ( 6 - B )  can now be used to simplify the remaining 
three equations in ( 1 2 ) ,  which become 

This linear system in the weights can readily be solved: 

Using the las t  equation in  (8-B) , equation (7-B) reduces to 

1 
P 3 2  = 

6 w j  O )  a2 

so that equations ( 2 - B )  and ( 3 - B )  a re  also satisfied, provided 

2a3 ( a ,  - a,) 
a2 ( 4  - 5%)  

P =  32 (10-B) 

20 
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